340 research outputs found

    Robust and efficient people detection with 3-D range data using shape matching

    Full text link
    Information about the location of a person is a necessity for Human-Robot Interaction (HRI) as it enables the robot to make human aware decisions and facilitates the extraction of further useful information; such as low-level gestures and gaze. This paper presents a robust method for person detection with 3-D range data using shape matching. Projections of the 3-D data onto 2-D planes are exploited to effectively and efficiently represent the data for scene segmentation and shape extraction. Fourier descriptors (FD) are used to describe the shapes and are subsequently classified with a Support Vector Machine (SVM). A database of 25 people was collected and used to test this approach. The results show that the computationally efficient shape features can be used to robustly detect the location of people

    Does the vocational curriculum have a future?

    Get PDF

    RobotAssist - A platform for human robot interaction research

    Full text link
    This paper presents RobotAssist, a robotic platform designed for use in human robot interaction research and for entry into Robocup@Home competition. The core autonomy of the system is implemented as a component based software framework that allows for integration of operating system independent components, is designed to be expandable and integrates several layers of reasoning. The approaches taken to develop the core capabilities of the platform are described, namely: path planning in a social context, Simultaneous Localisation and Mapping (SLAM), human cue sensing and perception, manipulatable object detection and manipulation

    Biotic phase micropollutant distribution in horizontal sub-surface flow constructed wetlands.

    Get PDF
    The distribution of micropollutants in biotic phases of horizontal sub-surface flow (HSSF) constructed wetlands was investigated. 88 diverse micropollutants (personal care products, pharmaceuticals and illicit drugs) were monitored for in full-scale HSSF steel slag and gravel beds to assess their fate and behaviour during tertiary wastewater treatment. Of the studied micropollutants 54 were found in receiving and treated wastewaters. Treatment reduced concentrations of several micropollutants by >50% (removal range −112% to 98%) and resulted in changes to the stereo-isomeric composition of chiral species. For example, stereo-selective changes were observed for 3,4-methylenedioxymethamphetamine (MDMA) and atenolol during HSSF constructed wetland treatment for the first time. Analysis of sludge present within the HSSF beds found 37 micropollutants to be present. However, concentrations for the majority of these micropollutants were not considered high enough to suggest partitioning into sludge was a contributing mechanism of removal. Nevertheless the preservative methylparaben was found at 2772 mg bed−1. Its daily removal from wastewater of 3.4 mg d−1 indicates partitioning and accumulation in sludge contributes to its removal. Other micropollutants found at high levels in sludge (relative to their overall removals) were the antidepressants sertraline and fluoxetine, and the metabolite desmethylcitalopram. Furthermore, process balances indicated uptake and metabolism by Phragmites australis (Cav.) Trin. ex Steud did not contribute significantly to micropollutant removal. However analysis of plant tissues evidenced uptake, metabolism and accumulation of recalcitrant micropollutants such as ketamine and carbamazepine. It is considered that the rate of uptake was too slow to have a notable impact on removal at the 14 h hydraulic retention time. Despite evidence of other removal mechanisms at play (e.g., partitioning into sludge and plant uptake), findings indicate biodegradation is the dominant mechanism of micropollutant removal in HSSF constructed wetlands

    Hazard and risk assessment for indirect potable reuse schemes: An approach for use in developing Water Safety Plans

    Get PDF
    This is the post-print version of the final paper published in Water Research. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper describes research undertaken to develop an approach for facilitating an initial hazard assessment and risk characterisation for a proposed indirect potable reuse scheme, as part of the water safety plan recommended by the World Health Organization. The process involved a description and evaluation of the catchment, which was the sewerage system supplying the sewage treatment works that would provide the effluent to supply the pilot scale indirect potable reuse water treatment plant. Hazards, sources and barriers throughout the proposed system were identified and evaluated. An initial assessment of the possible hazards, highlighted chemical hazards as predominating, and assessment of risks, using a heat map as output, categorised most hazards as medium or high risk. However, this outcome has been influenced by a precautionary approach which assigned a high likelihood to the occurrence of hazards where no data was available on their occurrence in the system. As more data becomes available, and the waster safety plan develops, it is anticipated that the risk heat map will become more specific. Additionally, high quality targets, to drinking water standards, have been set, although water from the potable reuse plant will be discharged to receiving waters where it will undergo natural attenuation prior to further treatment to potable standards before distribution. The assessment has demonstrated the usefulness of the approach where data is initially limited, in generating a heat map allowing for prioritisation of hazards to a practical level.Thames Water Utilities Ltd and Mexican Consejo Nacional de Ciencia y Tecnologıa

    Multi-residue determination of micropollutants in Phragmites australis from constructed wetlands using microwave assisted extraction and ultra-high-performance liquid chromatography tandem mass spectrometry.

    Get PDF
    In constructed wetlands, micropollutants can be removed from water by phytoremediation. However, micropollutant uptake and metabolism by plants here is poorly understood due to the lack of good analytical approaches. Reported herein is the first methodology developed and validated for the multi-residue determination of 81 micropollutants (pharmaceuticals, personal care products and illicit drugs) in the emergent macrophyte Phragmites australis. The method involved extraction by microwave-accelerated extraction (MAE), clean-up using off-line solid phase extraction and analysis by ultra-high-performance liquid chromatography tandem mass spectrometry. Development of the MAE method found the influence of studied variables on micropollutant recovery to be: extraction temperature > sample mass > solvent composition. Validation of the developed extraction protocol revealed that method recoveries were in the range 80-120% for the majority of micropollutants. Method quantitation limits (MQLs) were generally < 5 ng g-1 dry weight, demonstrating the sensitivity of the methodology. Application of the method to P. australis from a constructed wetland used to treat trickling filter effluent found 17 micropollutants above their MQL, up to concentrations of 200 ng g-1. Other than uptake, the presence of several metabolites (carbamazepine 10,11 epoxide, desvenlafaxine, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, N-desmethyltramadol and norketamine) indicated that metabolism within the plant may also occur. This new analytical methodology will enable a process mass balance of the constructed wetland to be attained for the first time, and thus help understand the role of phytoremediation in micropollutant removal by such systems

    Fate of drugs during wastewater treatment

    Get PDF
    This is the post-print version of the final paper published in TrAC Trends in Analytical Chemistry. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Recent trends in the determination of pharmaceutical drugs in wastewaters focus on the development of rapid multi-residue methods. This review addresses recent analytical trends in drug determination in environmental matrices used to facilitate fate studies. Analytical requirements for further fate evaluation and tertiary process selection and optimization are also discussed.EPSRC, Northumbrian Water, Anglian Water, Severn Trent Water, Yorkshire Water, and United Utilities

    Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach

    Get PDF
    Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater-based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a detection frequency in line with the respective local community. WBE offers a low cost, non-invasive approach for supplementing clinical testing and can provide longitudinal insights that are impractical with traditional clinical testing
    corecore